(0) 7
 Tangent, Sine, and Cosine

REVIEW

Trigonometry is based upon 3 basic ratios showing the relationship of right triangle sides and their angles.
As you can see from our example with a 30-60-90 triangle.

No matter what the size of the right triangle, the, the ratio of the side opposite of 30° and the hypotenuse stays the same.

This is important to know to figure out missing sides and angles in many right triangles.

UNDERSTAMDING TERMINOLOGY

a

UNDERSTAMDING TERMINOLOGY

a

UNDERSTANDING TERMINOLOGY

The 3 basic ratios are the following:

SINE

COSINE TANGENT

They are abbreviated using their first 3 letters

$\sin \theta=$

$\cos \theta=\square$
$\tan \theta=$

$\sin \theta=$
$\cos \theta=$

SOHCAHTOA

$\tan \theta=\square$

State the trig ratio as a simplified

$\cos \mathrm{A}=$
$\cos B=$
$\tan \mathrm{A}=$
$\tan B=$

State the trig ratio as a simplified fraction (exact form) and as a decimal rounded to 4 decimal places.

$\sin A=$

$\cos \mathrm{A}=$

$\tan \mathrm{A}=$
= .
$=$.
$=$.

TRIGONOMETRIC RATIO TABLES

Using your trigonometric table, find the decimal value of the following:

$\sin 32^{\circ}=$

$\cos 65^{\circ}=$

$\tan 12^{\circ}=$

Using your trigonometric table, find the degree measure closest to the given ratio:

$\cos x=0.9650$

$\tan \theta=1.8123$

$\sin \theta=0.8003$

$$
\sin \theta=5 / 8
$$

Using your calculator, find the degree measure closest to the given ratio:

Using your calculator, find the degree measure closest to the given ratio:

10

Using your calculator, find the degree measure closest to the given ratio:

12

